
ChatScript Fact Manual
© Bruce Wilcox, gowilcox@gmail.com

Revision 9/24/2013 cs3.63

SIMPLE FACTS

Facts are triples of subject, verb, object – though those are just the names of the fields
and may or may not be their content. Facts look like this:

 (Bob eat fish)
The system has a number of facts it comes bundled with and others can be created and
stored either from compiling scripts, or from interactions with the user. Facts can use
words, numbers, or other facts as field values, representing anything. You can build
records, arbitrary graphs, treat them as arrays of data, etc.

Simple Creating Facts

^createfact(subject verb object) – this creates a fact triple. The system will not create
duplicate facts. If you have a fact (Bob eat fish) then executing

^createfact(Bob eat fish)
will do nothing further (but it will return the found fact). One way to create a fact of a
fact is as follows:

^createfact((Bob eat fish) how slowly)
The other way is to assign the value of fact creation to a variable and then use that
variable. You need to pass in a flag at creation, to tell the system the value is a factid.

$fact = ^createfact(Bob own fish)
^createfact ($fact Bob pet FACTSUBJECT)
$fact = ^createfact(Bob own dog)
^createfact ($fact Bob pet FACTSUBJECT)

The above creates facts which are findable by querying for pets Bob has. You can have
any number of flags at the end. Other flags include:

FACTVERB and FACTOBJECT
FACTTRANSIENT – the fact will disappear at the end of this volley
FACTDUPLICATE – allow this fact to be a duplicate of an existing fact

– this is particularly important if you go around deleting facts that might be referred to by
other facts. Those other facts will also get deleted. So if you want complete isolation
from facts that look the same in some subfact but shouldn't be shared, you'll want that
subfact declared FACTDUPLICATE.

Accessing Facts

To find facts, you need to make a query. There can be many different kinds of queries.

1

mailto:gowilcox@gmail.com

^FindFact(subject verb object) The simplest fact find involves knowing all the
components (meanings) and asking if the fact already exists. If it does, it returns the
index of the fact. If it doesn't it returns FAILRULE_BIT.

^query(kind subject verb object) – The simplest query names the kind of query and gives
some or all of the field values that you want to find. Any field value can be replaced
with ? which means either you don’t care or you don’t know and want to find it. The
kinds of queries are programmable and are defined in LIVEDATA/queries.txt (but you
need to be really advanced to add to it). The simplest query kinds are:

direct_s - find all facts with the given subject
direct_v – find all facts with the given verb
direct_o – find all facts with the given object
direct_sv – find all facts with the given subject and verb
direct_vo – find all facts with the given object and verb
direct_svo- find all facts given all fields (prove that this fact exists).

Unipropogate – find how subject joins into the object set.

If no matching facts are found, the query function returns the RULE fail code.

?: (do you have a dog) ^query(direct_svo I own dog) Yes.

If the above query finds a fact (I own dog) then the rule says yes. If not, the rule fails
during output. This query could have been put inside the pattern instead.

For unipropogate, if you have these concepts;
concept: ~things (~animals ~vegetables ~minerals)
concept: ~animals (~canine ~feline)
concept: ~canine (dog)

Then ^query(unipropogate dog ? ~things 1) would return (~animals member ~things).
Note that the set to be found (~things) is not expanded. Normal queries expand any
reference to a set into all of its members and expand simple words to the entire wordnet
hierarchy above it. You can block this expansion behavior by putting a single quote in
front. Note for the idiom '_0 which means the original form of the match variable, you
have to use two quotes: ''_0.
^query(direct_svo 'bomb ''_0 '$$tmp)

Unipropogate expects a set as its object argument, so it does not need to be quoted.

A query can also be part of an assignment statement, in which case the destination set
argument (if supplied) is ignored in favor of the left side of the assignment, and the query
doesn't fail even if it finds no values. E.g.,

@2 = ^query(direct_sv I love you)
The above query will store its results (including no facts found) in @2.

2

System-reserved verbs

The system builds the Word-net hierarchy using the verb isa, with the lower-level (more
specific) word as subject and the upper-level word as object. E.g.,

(dog~1 isa animal~4)
The system builds concept and topic sets using the verb member with the member value
as subject and the set name as object. E.g.,

(run member ~movementverbs)
When you build a table and a data member has a short-form like Paris for Paris,_France,
the verb is also member with subject as short form and long form as object. E.g.,

(Paris member Paris,_France)

@Fact-Sets

The results of queries are stored in a fact-set. Fact-sets are labeled @0, @1, etc. through
@19. By default in the simplest queries, the system will find all facts that match and
store them in fact-set @0. A fact set is a collection of facts, but since facts have fields
(are like records), it is also valid to say a factset is a collection of subjects, or verbs, or
objects. Therefore when you use a factset, you normally have to specify how you want it
used.
@1subject means use the subject field
@1verb means use the verb field
@1object means use the object field
@1fact means keep the fact intact (a reference to the fact) – required if assigning to
another set.
@1+ means spread the subject,verb,object onto successive match variables – only valid
with match variables
@1- means spread the object,verb,subject onto successive match variables– only valid
with match variables
@1all means the same as @1+, spread subject,verb,object,flags onto match variables.
_6 = ^first(@1+) - this puts subject in _6, verb in _7, object in _8

?: (do you have a pet ^query(direct_sv I pet ?)) I have a @0object.
If the chatbot has facts about what pets it has stored like (I pet dog) and (I pet cat), then
the rule can find them and display one of them. Which one it shows is arbitrary, it will be
the first fact found.

You can transfer the contents of one fact-set to another with a simple assignment
statement like @2 = @1 .

You can transfer fields of a fact from a fact-set using assignment, while simultaneously
removing that fact from the set. The functions to do this are:
^first(fact-set) – retrieve the first fact
^last (fact-set) – retrieve the last fact

3

^pick (fact-set) – retrieve a random fact
e.g.

_1 = ^first(@1all)

You can erase the contents of a fact-set merely by assigning null into it.
@1 = null

This does not destroy the facts; merely the collection of them.

You can sort a fact set which has number values as a field.
^sort(fact-set) – the fact set is sorted from highest first. By default, the subject is treated
as a float for sorting. You can say something like @2object to sort on the object field.

If you actually want to destroy facts, you can query them into a fact-set and then do this:
^delete(@1) – all facts in @1 will be deleted and the set erased

If you want to know how many facts a fact-set has, you can do this:
^length(@1) - outputs the count of facts

^Unpackfactref examines facts in a set and generates all fact references from it. That is,
it lists all the fields that are themselves facts.

@1 = ^unpackfactref(@2)
All facts which are field values in @2 go to @1. You can limit this:

@1 = ^unpackfactref(@2object)
only lists object field facts, etc

Unlike variables, which by default are saved across inputs, fact sets are by default
discarded across inputs. You can force a set to be saved by saying:

^save(@9 true) # force set to save thereafter
^save(@9 false) # turn off saving thereafter

Fact Indexing

A fact like (bird eat worm) is indexed by the system so that bird can find facts with bird
as the subject or as the verb or as the object. Similarly eat can find facts involving it in
each position. As a new fact is added, like (bird hate cat) the word bird gets the new fact
added to the front of its list of facts involving bird in the subject field. So if you search
for just one fact where bird is the subject, you get the most recent fact. If you search for
all facts with bird as the subject, the facts will be stored in a fact set most recent first
(lowest/earliest element of the fact set). You would use ^first(@2) to get its most recent
fact and ^last(@2) to get its oldest fact.

Tables

With the ability to create and manipulate facts comes the need to create large numbers of
them conveniently. This is the top-level declaration of a table, a combination of a

4

transient output macro declaration and a bunch of data to execute the macro on. Usually
the macro creates facts.

The table has a name (ignored- just for your documentation convenience), a list of
arguments, a bunch of script, a DATA: separator, and then the table data. The data is line-
oriented. Within a line there are no rules about whitespace; you can indent, tab, use lots
of spaces, etc. Each line should have as many elements as the table has arguments. The
table ends with the end of file or a new top-level declaration. E.g.,

Table: authors (^author ^work ^copyright)
^createfact(^author member ~author) # add to concept ~author
^createfact(^work member ~book) # add to concept ~book
^createfact(^work exemplar ^author) # author wrote this book
if (^copyright != *) { ^createfact(^copyright date ^work) }

Data:
“Mark Twain” “Huckleberry Finn” 1884

“Mark Twain” “Tom Sawyer” * # don’t know the date

For tables with really short data, you can choose to cheat on the separate line concept,
and separate your entries with \n , which is the equivalent.

DATA:
a 1 \n b 2 \n c 3 \n d 4 \n e 5 # values assigned to letters.
f 6 g 7

Tables of only single values do not need a line separator. E.g,
table: mine(^arg)
DATA:
value1 value2 value3
value4 value5 value6

A table allows you to automatically list shortened synonyms of proper names. For
example, Paris could be a shortened synonym for Paris, France. In a table of capitals,
you would normally make the fact on the full name, and write the shortened synonyms in
parens. You may have more than one:

“Paris, France” (Paris “City of Love”) France
These synonyms are represented using the member verb, sort of like making a concept set
of the full name. The system detects this specially during inferencing, and if an argument
to ^query were Paris, it could automatically transfer across and consider facts for
Paris,_France as well. It would not go the other way, however, so if the argument were
Paris_France, it would not move over to Paris. You should store your facts on the full
name. The mechanism allows user input to use the short name.

While a line of table data must fill all fields of the table exactly (no more or less), you can
tell the system to fill in the remaining arguments with “*” by putting “…” as your last
value. Eg.

table: test(^item1 ^item2 ^item3 ^item4)
….

5

Data:
lion 50 …

This table will use * for item3 and item4 of lion.

Note: If you create member facts to add something to a concept, the concept must have
been predeclared. You can declare an empty concept just before the table like this:

concept: ~newconcept()
table: mytable(^x)
createfact(^x member ~newconcept)
DATA:

TABLEMACRO:

When you have tables you generate over and over again, you don't want to repeat all the
script for it. Instead you want to declare a permanent table function using a table macro.
It looks a lot like a table definition, except it has a different declaration header and has no
DATA: or data attached.

tablemacro: ^secondkeys(^topic ^key)
$$tmp = join(^topic . 1)
CreateFact(^key member $$tmp)

The table macro can declares more arguments than the table will have. When you invoke
an actual table using it, you will be supplying some of the arguments then, and the rest
come from the table data. An invocation of this tablemacro would look like this:

table: ^secondkeys(~accidents)
repair garage insurance injure injury

Note several things. This is declared as a table. The system can tell the difference
because the table name (^secondkeys) will already have a definition. The arguments you
supply must be real arguments, not ^xxx names of dummy arguments). This table
presupplies one argument (~accidents). There is no need for a DATA: line because the
table function has already been defined- it knows all its code. So one proceeds directly to
supplying table data. In this instance, the code will be expecting each table entry is one
value, because the ^secondkeys tablemacro said there are two arguments. Since one is
presupplied, the table data must supply the rest (1). So this will execute the table code on
each of the 5 table data entries.

String processing in Tables

It is common for a string to be a table argument. Any compiled string ^”xxx” stores itself
in an appropriate manner. Regular strings, by default, remove their quotes and substitute
underscores for spaces. This is good when the intention is as a composite word, but if the
string is to be used as direct output, you may prefer to retain the quotes and spaces. You
can do this by declaring the argument name with .KEEP_QUOTES. E.g.,
table: ^test(^my1 ^my2.KEEP_QUOTES)

6

It is particularly important to use the quoted form when the contents includes a concept or
topic name that has underscores because the system cannot tell a spacing underscore from
a significant one.

Fact Functions

Various functions create, destroy and aggregate facts, as well as mark and unmark them.
For those routines that aggregate facts, the result is stored into a fact set. Usually this is
done by assignment, e.g.,
 @2 = gambitTopics()
Such assignments never fail, they just may assign a zero length to the result. Often,
however, you can use the function to simultaneously store and test. If not in an
assignment context, the function will store results into @0 and fail if the result is no facts.
Eg.,

if (gambitTopics()) { first(@0object)}

^Createattribute(subject verb object flags) This is just like ^createfact, except that it
only allows one fact with this subject and verb to exist. It will kill off any other such
facts. If, for example, you had a fact (car1 cost $1500) and executed
^createattribute(car1 cost $1000) then after this the $1500 fact would no longer exist and
only the new price fact would exist. Note- if you have facts that reference facts that
would be killed off, the createattribute call will decline to create a new fact and fail
instead. Also, don't have those old facts as values of variables or factsets because those
values will become erroneous. The system will not stop you, but you cannot guarantee
the results after that. BE CAREFUL you don't create facts where the verb and object are
intended to be constant and the subject varies. It won't work correctly.

(car space 10) – fine if 10 can vary
(10 space car) – wrong if 10 can vary

^intersectfacts(from to) Sees what facts in the from set are in common with the to set.
You specify what field to intersect on by naming a field of the to set (or none). Eg.,

^intersectfacts(@0 @1object)
will find facts in set 0 whose objects match any in set 1. If you dont name a field, you
have to find exact matches on the entire fact.

^gambittopics() – finds user topics (not system topics) with gambits remaining. If you
use it in a fact-set assignment statement, it stores all topics found as facts (topicname
^gambittopics topicname). You can then display them or use them as you wish E.g.

@1 = ^gambittopics()
^gambit(^pick(@1)) # randomly issue a gambit

Otherwise, if you don’t use an assignment, it stores into set 0 and fails if no facts are
found.

^keywordtopics() lists topics and priority values for matching keywords in input. An
optional argument if “gambit”, will ignore topics without available gambits. The verb
used is: ^keywordtopics.

7

^pendingtopics() - list of currently pendings topics (interesting)

^queryTopics(word) – get topics of which word is a keyword, returns as fact triples of
word, “member”, topicname. If used in an assignment to a set, it will not fail, but it may
return 0 elements. If not used in an assignment, then it will use set @0 and will FAIL if
no topics are found.

^AddProperty(set flag) – add this flag onto all facts in named set. Typically you would
be adding private marker flags of yours. If set has a field marker (like @2subject) then
the property is added to all values of that field of facts of that set.

^RemoveProperty(set flag) – remove this flag from all facts in named set. Typically
you would be removing private marker flags of yours or making transient facts
permanent.If set has a field marker (like @2subject) then the property is added to all
values of that field of facts of that set.

^createfact (subject verb object flags) - the arguments are a stream, so “flags” is
optional. Creates a fact of the listed data if it doesn't exist (unless flags allows duplicates).

^delete(set) - erase all facts in this set. This is the same as ^addfactproperty(set
FACTDEAD)

^flushfacts(factid) – kills all facts created after this one. To use effectively, you need to
create an initial dead fact e.g, $$marker = ^createfact(junk marker data FACTDEAD)
and then if you want to cancel sentence processing because, for example, you intend to
replace this sentence with a new one (like with pronoun resolution), you can erase any
facts you created while doing this sentence by doing ^flushfacts($$marker) .

^field(fact fieldname) – given a reference to a fact, pull out a named field. If the
fieldname is in lower case and the field is a fact reference, you get that number. If the
fieldname starts uppercase, the system gives you the printout of that fact. Eg for a fact:

$$f = createfact (I eat (he eats beer))
^field($$f object) returns a number (the fact index)
and ^field($$f object) returns (he eats beer)

^find(setname itemname) – given a concept set, find the ordered position of the 2nd
argument within it. ^Output that index. Used, for example, to compare two poker hands.

^findmarkedfact(subject verb mark) – given the arguments, start at subject, follow all
facts having the verb, and stop if you can find a fact with the mark given.

^first(fact-set) – retrieve the first fact

^last (fact-set) – retrieve the last fact

8

^length(word) – puts the length of the word into the output stream. If word is actually a
fact set reference (e.g., @2), it returns the count of facts in the set.

^next(FACT set-what) - allows you to walk a set w/o erasing anything. You can reset a
set with
^reset(@1)

 then loop thru it looking at the subject field with
loop() { _0 = next(FACT @1subject) }

^pick (~concept) – retrieve a random member of the concept. Pick is also used with
factsets to pick a random fact (see FACTS).

^reset(@1) – reset a fact set for browsing using ^next.

^query(kind subject verb object) – see writeup earlier.

^save(set) – mark set to be saved with user data from here on

^sort(set) - sort the set.. doc unfinished.

^unduplicate(set) – remove duplicate facts from this set. The destination set will be
named in an assignment statement like:

@1 = ^unduplicate(@0)

^unpackfactref(set) - find all facts in set which have facts as fields and then make
THOSE facts be the facts of the set. The destination set will be named in an assignment
statement like:

@1 = ^unpackfactref(@0)

^makereal() - convert all user facts that are transient into non-transient facts. Probably
only useful when using plans, which generate transient facts representing the state of the
world and you want those planned world facts to become the current real facts.

9

Facts vs Variables

How are facts and variables different? Which should you use?

Facts are persistent. If you don't create them explicitly as transient, they stay with the user
forever. Variables that don't begin with $$ are also persistent and stay with the user
forever. There are no limits on the number of variables you can have (none that you need
be aware of) and variable names can be up to 999 characters long. The limits on user
facts that can be saved are defined as a parameter when CS is started up (default 100).
You can create more facts, but it will only save the most recent limit.

Facts are indexed by subject, verb, object, so you can query to find one. Variables you
have to know the name of it (but it can be composed on the fly). Facts use up more
memory, but can be exported to arbitrary files (and imported).

Facts can represent an array of values, with a field as index. But so can variables with
composited naming. So mostly it depends on whether you want to find information by
querying. You have implicit associations of facts by the values of the subject, verb, and
object fields. But you could create a variable name of two of the fields of the fact, if the
third field was really the fact's “value”.

10

ADVANCED FACTS

Facts of Facts

Suppose you do something like CreateFact(john eat (wet food peanuts)). What happens
when you retrieve it into a fact set and then do _1 = ^last(@1) and get the fact
disassembled onto _1, _2, _3, and 4? What you get for _3 is a reference to a fact, that is,
a number. You can decode that by using ^field(_3 subject) or ^field(_3 verb) or ^fact(_3
object) to get wet or food or peanuts. The first argument to ^field is a fact number.

You get a fact number if you do _3 = CreateFact(….) and can decode _3 the same way.
Naturally this function fails if you give it something that cannot be a fact reference.

ESOTERIC FACTS

Compiled Script Table Arguments

You can specify that a table argument string is to be compiled as output script. Normally
it’s standard word processing like all English phrases. To compile it, you prefix the
doublequoted string with the function designator ^. E.g.,

DATA:
~books “this is normal” ^”[script a][script b] ^fail(TOPIC)”

This acts like a typical string. You pass it around, store it as value of variables or as a
field of a fact. Like all other strings, it remains itself whenever it is put into the output
stream, EXCEPT if you pass it into the ^eval function. Then it will actual get executed
So. To use that argument effectively, you would get it out of the fact you built and store it
onto some variable (like _5 or $value) , and then ^eval(_5) or ^eval($value).

FactSet Remaps

Factset names like @1 are not mnemonic. You can “rename” them as follows:
define: @authors @5 -- whenver the system sees @authors, it will use @5
You can do this within a topic (limited to it) or outside a topic (globally thereafter).

Defining your own queries

The query code wanders around facts to find those you want. But since facts can
represent anything, you may need to custom tailor the query system, which itself is a
mini-programming language. The full query function is takes nine arguments and any
arguments at the end you omit default themselves.

All query kinds are defined in LIVEDATA/queries.txt and you can add entries to that (or
revise existing ones). The essential things a query needs to be able to do is:

1. Start with existing words or facts
2. Find related words or facts

11

3. Mark newly found words or facts so you don’t trip over them multiple times
4. Mark words or facts that you want to ignore or be treated as a successful find
5. Store found facts

A query specification provides a name for the query and specifies what operations to do
with what arguments, in what order.

An essential notion is the “tag”. As the system examines facts, it is not going to compare
the text strings of words with some goal. That would be inefficient. Instead it looks to see
if a word or a fact has a particular “tag” on it. Each word/fact can have a single tag id,
drawn from a set of nine. The tags ids are labeled ‘1’ thru ‘9’.

Another essential notion is the field/value. One refers to fields of facts or values of the
incoming arguments, or direct values in the query script. Here are the codes involved:

1. s = refers to the subject argument or the subject field of a fact
2. v = refers to the verb argument or the verb field of a fact
3. o = refers to the object argument or the object field of a fact
4. p = refers to the propogate argument
5. m = refers to the match argument
6. ~set = use the explicitly named concept set
7. ‘word = use the explicitly named word
8. @n = use the named fact set

Each query has is composed of four segments. Each segment is separated using a colon.
Each segment is a series of actions, which typically involve naming a tag, a field, and
then the operation, and possibly special arguments to the operation.

You can separate things in a segment with a period or an underscore, to assist in visual
clarity. Those characters are ignored. I always separate actions by underscores. The
period I use to mark the end of literal values (~sets and ‘words).

EXAMPLE 1 – PARIS as subject

Consider this example: we want to find facts about Paris. The system has these facts:
(Paris exemplar France) and (Paris member ~capital)

Our query will be ^query(direct_s Paris ? ?) which request all facts about a subject named
Paris (to be stored in the default output factset @0).

Segment one handles marking and/or storing initial values. You always start by naming
the tag you want to use, then naming the field/value and the operation. The operations
are:

1. t = tag the item
2. q = tag and queue the item
3. < or > scan from the item, tagging things found (more explanation shortly)

The query direct_s, which finds facts that have a given subject, is defined as

12

1sq:s::
This says segment 1 is 1sq and segment 2 is s and segments 3 and 4 have no data.
Segment 1 says to start with a tag of ‘1’, use the subject argument and tag and queue it.

Segment two says how to use the queue. The queue is a list of words or facts that will be
used to find facts. In our example, having stored the word Paris onto the queue, we now
get all facts in which Paris participates as the subject (the s: segment)

Segment three tells how to disqualify facts that are found (deciding not to return them).
There is no code here, so all facts found will be acceptable.

Segment four tells how to take disqualified facts as a source of further navigation around
the fact space. There is nothing here either.

Therefore the system returns the two facts with Paris as the subject.

Example 2 – Finding facts up in the hierarchy

Assume you have this fact (23 doyou ~like) and what you actually have is a specific
verb like which is a member of ~like. You want to find facts using doyou and like and
find facts where doyou matches and some set that contains like matches. The query for
this is direct_v<o, which means you have a verb and you have an object but you want the
object to match anywhere up in the hierarchy. < , which means the start of the sentence in
patterns, really means the left side of something. And in the case of facts and concepts,
the left side is the more specific (lower in the hierarchy) and the right side is most general
(higher in the higherarchy) when the verb is member.

13

	Simple Creating Facts
	Accessing Facts
	System-reserved verbs
	@Fact-Sets
	Fact Indexing
	“Mark Twain” “Huckleberry Finn” 1884

